

Marathwada Institute of Technology, Aurangabad

Department of Basic Sciences and Humanities

Title of the Subject: Engineering Physics BTBS102/ BTBS202		
Title of the Unit: Oscillation, Ultrasonic and		
Dielectric Materials		

Multiple Choice Questions		
Question No.	Question Description	Expected Marks
1	Oscillations become damped due to i) normal force ii) friction iii) tangential force iv) parallel force	1
2	If an object moves back and forth repeatedly around a mean position it is called i) oscillating ii) revolving iii) rotating iv) motion	1
3	Maximum displacement from equilibrium position is i) frequency ii) amplitude iii) wavelength iv) period	1
4	Materials whose bounded dominant charges that are not free to travel are i. Dielectrics ii. semiconductors iii. superconductors iv. conductors	1
5	Dielectrics are basically i. insulators ii. semiconductors iii. superconductors iv. conductors	1
6	Materials whose dominant charges in molecules are bound negative and positive charges that are held in place by atomic and molecular forces are known as i. Dielectrics ii. conductors iii. semiconductors iv. superconductors	1

	Dielectric material's atoms and molecules are microscopically	1
	i. positive	
7	ii. negative	
	iii. neutral	
	iv. None of these	
	Dielectric don't contain any	1
8	i. <mark>free charge</mark>	
0	ii. bound charge	
	iii. proton	
	iv. neutron	-
	In absence of applied electric field in nonpolar dielectric materials, charges are	1
	averaged in such a way that	
9	i. opposite charges add each other	
	<mark>ii. opposite charges cancel each other</mark>	
	iii. similar charges add each other	
	iv. similar charges repel each other	
	In conductors, opposite charges are separated by	1
10	i. dielectric	
10	ii. insulator	
	iii. microscopic distances	
	iv. large distances	
	When electric field reduces to zero, the material still remained polarized and	1
	polarization vector has a certain value, this process is known as	
11	<mark>i. remanent polarization</mark>	
	i. permanent polarization	
	i. ions polarization	
	atomic polarization	
	Electrical polarity's measurement of charges present in as system is termed as	1
12	i. electric dipole moment	
	11. transition dipole moment	
	iv magnetic dipole moment	
	IV. Hagiete upok nonen	
	Sounds of frequency higher than 20,000 Hz which are inaudible to normal human	1
	ear are called	
13		
	i. noise	
	ii. frequency	
	iii. ultrasonics	

14 i. energy 1 14 i. frequency 1 14 i. frequency 1 15 oscillations are damped due to presence of 1 15 i. linear motion 1 16 i. linear motion 1 17 i. linear motion 1 18 restoring force 1 16 i. simple 1 16 i. simple 1 16 i. simple 1 11 ii. reat/om 1 17 ii. linear oscillations 1 18 The oscillations of a system in the presence of some resistive force are 1 18 ii. simple harmonic oscillations 1 18 ii. linear motion 1 18 ii. linear motion 1 19 A. normal force 1 19 A. normal force 1		iv. amplitude	
Ultrasonic waves carry more 1 14 i. energy ii. frequency iii. heat iv. both frequency and energy Oscillations are damped due to presence of 15 i. linear motion ii. restoring force iii. frictional force iv. mechanical system in the presence of some resistive force are 16 i. simple ii. damped iii. random iv. linear 17 ii. linear oscillations iii. simple harmonic oscillations iii. damped oscillations iii. damped oscillations iii. damped oscillations iii. linear motion ii. simple harmonic motion iii. linear motion ii. linear motion ii. simple harmonic motion iii. damped motion iv. random motion v. random motion v. random motion v. random motion			
14 i. energy ii. frequency iii. beat iv. both frequency and energy 0 Oscillations are damped due to presence of 1 15 i. linear motion 1 ii. frequency iii. frequency 1 15 i. linear motion 1 ii. frequency iii. frequency 1 16 i. linear motion 1 16 i. simple 1 ii. damped 1 1 iii. random iv. linear 1 17 iinear oscillations 1 18 iinear oscillations 1 18 iinear motion 1 19 A. normal force 1		Ultrasonic waves carry more	1
14 i. energy ii. frequency iii. heat iv. both frequency and energy 0scillations are damped due to presence of 1 15 i. linear motion ii. restoring force iii. frictional force iv. mechanical force iv. mechanical energy of the system as time passes, the motion is said to be 16 i. simple ii. damped iii. random iv. incar 17 ii. linear oscillations iii. simple harmonic oscillations iii. damped oscillations iii. simple harmonic oscillations iii. damped oscillations iii. simple harmonic oscillations iii. simple harmonic oscillations iii. damped oscillations iv. random motion iv. random motion <th></th> <td></td> <td></td>			
14 ii. frequency iii. heat iv. both frequency and energy 0.Scillations are damped due to presence of 1 15 i. linear motion ii. restoring force iii. frictional force iv. mechanical force iv. mechanical force iv. mechanical force iii. friction reduces the mechanical energy of the system as time passes, the motion is said to be 16 i. simple ii. adamped iii. random iv. linear The oscillations of a system in the presence of some resistive force are 1 17 i. linear oscillations ii. simple harmonic oscillations ii. simple doscillations iv. simple doscillations 1 18 i. linear motion ii. linear motion ii. simple harmonic motion ii. damped motion 1 iii. damped motion iv. random motion 1 18 i. linear motion ii. damped motion iv. random motion iii. damped motion 1 19 B. friction 1	14	i. energy	
iii. beat iv. both frequency and energy Oscillations are damped due to presence of 1 15 i. linear motion ii. restoring force iii. frictional force iv. mechanical force iv. mechanical force iv. mechanical force iv. mechanical force iii. frictional force iv. mechanical force iv. mechanical force iv. mechanical energy of the system as time passes, the motion is said to be 16 i. simple iii. random iv. linear 17 linear oscillations of a system in the presence of some resistive force are 17 i. linear oscillations iii. damped oscillations iv. random oscillations iv. random oscillations iv. random oscillations iii. damped oscillations iv. random oscillations iv. random oscillations iv. random oscillations iv. random motion iv. random motion iv. random mot	14	ii. frequency	
iv. both frequency and energy Oscillations are damped due to presence of 1 i. linear motion ii. restoring force iii. rictional force iv. mechanical force iii. faitching file ii		iii. heat	
Oscillations are damped due to presence of 1 15 i. linear motion ii. restoring force iii. frictional force iv. mechanical force iv. mechanical force 16 i. simple iii. damped iii. random iv. linear 1 16 i. simple iii. damped iii. random iv. linear 1 17 1 18 1 18 1 18 1 18 1 19 0 19 8		iv. both frequency and energy	
15i. linear motion ii. restoring force jii. frictional force iv. mechanical force iv. mechanical force116When friction reduces the mechanical energy of the system as time passes, the motion is said to be116i. simple ii. damped iii. random iv. linear117The oscillations of a system in the presence of some resistive force are ii. simple harmonic oscillations ii. simple harmonic oscillations iv. random oscillations iv. random oscillations118ii. linear motion ii. simple harmonic motion ii. simple harmonic motion ii. simple harmonic motion ii. simple harmonic motion119Oscillations become damped due to1		Oscillations are damped due to presence of	1
15 ii. restoring force iii. frictional force iv. mechanical force iv. mechanical force 16 ii. simple iii. damped iii. random iv. linear 17 ii. linear oscillations ii. simple harmonic oscillations iii. simple harmonic oscillations iii. simple harmonic oscillations iii. simple harmonic oscillations iii. simple harmonic motion iii. damped oscillations iv. random motion iv. random motion ii. linear motion ii. simple harmonic motion iii. damped motion iv. random motion		i. linear motion	
ii. frictional force iv. mechanical force iv. mechanical force 16 i. simple ii. damped iii. random iv. linear 17 inear oscillations ii. simple harmonic oscillations iii. damped oscillations iii. damped oscillations iii. simple harmonic oscillations iii. simple harmonic oscillations iii. simple harmonic oscillations iii. simple harmonic motion iii. simple harmonic motion iii. simple harmonic motion iii. simple harmonic motion iv. random oscillations ii. sinple harmonic motion	15	ii. restoring force	
IV. mechanical force When friction reduces the mechanical energy of the system as time passes, the motion is said to be 1 16 i. simple ii. damped ii. i. random iv. linear 1 17 Inear oscillations of a system in the presence of some resistive force are 1 17 i. linear oscillations 1 ii. damped oscillations ii. simple harmonic oscillations 1 iii. damped oscillations 1 1 18 i. linear motion 1 ii. simple harmonic motion 1 1 18 i. linear motion 1 19 B. friction 1		iii. frictional force	
When friction reduces the mechanical energy of the system as time passes, the motion is said to be 1 16 i. simple ii. damped iii. random iv. linear 17 i. linear oscillations ii. simple harmonic oscillations iii. damped oscillations iii. damped oscillations iii. damped oscillations iii. damped oscillations iv. random motion iv. random force jv. random motion		iv. mechanical force	
motion is said to be i. simple ii. damped iii. random iv. linear Interpretations 17 i. linear oscillations ii. simple harmonic oscillations iii. damped oscillations iii. damped oscillations iv. random oscillations 18 i. linear motion ii. simple harmonic motion ii. simple harmonic motion iii. damped motion iv. random oscillations 18 i. linear motion iii. damped motion iv. random motion iii. damped motion iii. damped motion iii. damped motion iv. random motion iii. Anormal force 1 19 B. friction		When friction reduces the mechanical energy of the system as time passes, the	1
16 i. simple ii. damped iii. random iv. linear 17 The oscillations of a system in the presence of some resistive force are 1 17 i. linear oscillations 1 ii. simple harmonic oscillations ii. simple harmonic oscillations 1 iii. damped oscillations iv. random oscillations 1 iii. damped oscillations iii. damped oscillations 1 iii. inear motion ii. linear motion 1 ii. isimple harmonic motion iii. damped motion 1 iii. damped motion iv. random motion 1 iii. damped motion iv. random motion 1 iii. damped motion iv. random motion 1 iii. Anormal force 1 1 19 B. friction 1		motion is said to be	
16 1. simple ii. damped iii. random iv. linear 17 i. linear oscillations ii. simple harmonic oscillations iii. damped oscillations iii. damped oscillations iv. random oscillations ii. linear oscillations iii. damped oscillations iv. random motion ii. simple harmonic motion iii. damped motion iv. random force B. friction			
11 trandom iii. random iv. linear 17 The oscillations of a system in the presence of some resistive force are 17 i. iii. simple harmonic oscillations iii. damped oscillations iv. random oscillations iii. damped motion iii. simple harmonic motion iii. damped motion iv. random motion iv. <td< th=""><th>16</th><td>1. simple</td><td></td></td<>	16	1. simple	
iv. linear 17 The oscillations of a system in the presence of some resistive force are 1 17 i. linear oscillations 1 ii. simple harmonic oscillations 1 1 iii. damped oscillations 1 1 iv. random oscillations 1 1 iii. damped oscillations 1 1 18 Shock absorbers in automobiles are one particle application of 1 18 i. linear motion 1 iii. simple harmonic motion 1 1 iv. random motion 1 1 19 B. friction 1		iii. random	
17 The oscillations of a system in the presence of some resistive force are 1 17 i. linear oscillations 1 ii. simple harmonic oscillations iii. damped oscillations 1 iv. random oscillations iv. random oscillations 1 18 i. linear motion 1 ii. simple harmonic motion ii. simple harmonic motion 1 18 i. linear motion 1 19 B. friction 1		iv. linear	
17 The oscillations of a system in the presence of some resistive force are 1 17 i. linear oscillations ii. simple harmonic oscillations iii. damped oscillations iv. random oscillations 1 18 i. linear motion 1 ii. simple harmonic motion ii. simple harmonic motion 1 18 i. linear motion 1 19 B. friction 1			-
17i. linear oscillations ii. simple harmonic oscillations iii. damped oscillations iv. random oscillations18Shock absorbers in automobiles are one particle application of i. linear motion ii. simple harmonic motion iii. damped motion iv. random motion118Oscillations become damped due to119A. normal force B. friction1		The oscillations of a system in the presence of some resistive force are	1
17 ii. simple harmonic oscillations iii. damped oscillations iv. random oscillations iv. random oscillations iv. random oscillations 18 Shock absorbers in automobiles are one particle application of 1 18 i. linear motion 1 ii. simple harmonic motion ii. simple harmonic motion 1 iii. damped motion iv. random motion 1 19 B. friction 1		i. linear oscillations	
iii. damped oscillations iv. random oscillations iv. random oscillations Shock absorbers in automobiles are one particle application of 18 i. linear motion ii. simple harmonic motion iii. damped motion iv. random motion oscillations become damped due to 19 B. friction	17	ii. simple harmonic oscillations	
iv. random oscillations iv. random oscillations Shock absorbers in automobiles are one particle application of 18 i. linear motion ii. simple harmonic motion iii. damped motion iv. random motion Oscillations become damped due to A. normal force 19 B. friction		iii. damped oscillations	
18 Shock absorbers in automobiles are one particle application of 1 18 i. linear motion ii. simple harmonic motion ii. simple harmonic motion iii. damped motion iv. random motion iv. random motion 19 B. friction		iv. random oscillations	
 18 i. linear motion ii. simple harmonic motion iii. damped motion iv. random motion Oscillations become damped due to A. normal force B. friction 		Shock absorbers in automobiles are one particle application of	1
18 i. linear motion ii. simple harmonic motion iii. damped motion iv. random motion V. random motion 0scillations become damped due to 1 A. normal force B. friction			
ii. simple harmonic motion iii. damped motion iv. random motion V. random motion Oscillations become damped due to A. normal force B. friction	18	i. linear motion	
iii. damped motion iv. random motion Oscillations become damped due to A. normal force B. friction	10	ii. simple harmonic motion	
iv. random motion Image: state of the		iii. damped motion	
Oscillations become damped due to 1 A. normal force 1 B. friction 1		iv. random motion	
A. normal force B. friction		Oscillations become damped due to	1
19 <mark>B. friction</mark>		A. normal force	
	19	B. friction	
C. tangential force		C. tangential force	
D. parallel force		D. parallel force	
Short Answer Question		Short Answer Question	1

Question No.	Question Description	Expected Marks
1	Define Ultrasonic Wave	2
2	Give engineering applications of Ultrasonic Wave	2
3	What are forces involved in forced oscillations.	2
4	Explain the term Dielectric constant	2
5	Explain the term Electric displacement	2
6	Explain the term polarizibility	2
7	Calculate the natural frequency of 40 mm length of a pure iron rod. Give the density of pure iron is $7.25 \times 10^3 \text{ kg/m}^3 \text{ and } \text{Y}=115 \times 10^9 \text{ N/m}^2$. can you use it in magnestriction oscillator to produce ultrasonic waves	2
8	Calculate the natural frequency of cast iron of 2.6 cm in length density of cast iron 7.25X 10^3 kg/m ³ and Y=1.16X 10^{11} N/m ²	2
9	Define Resonance give one example of it	2
10	State types different of dielectric polarization	2
11	What is the difference between Free and Forced oscillation	2

Long Answer Question		
Question No.	Question Description	Expected Marks
1	Explain the production of Ultrasonic wave with the help of Magnetostriction generator.	6
2	Explain the production of Ultrasonic wave with the help of piezoelectric method	
3	Obtain the differential equation of forced oscillations	6
4	Explain the term Dielectric polarization	6
5	Explain how temperature is dependent of dielectric materials	6
6	Explain Free oscillation & forced oscillations	6
7	Explain damped oscillation,	6
8	Derive differential wave equation,	6
9	Explain how frequency is dependent of dielectric materials	6

Marathwada Institute of Technology, Aurangabad

Department of Basic Sciences and Humanities

Title of the Subject: Engineering Physics BTBS102/ BTBS202		
Title of the Unit: Optics, Fibre Optics and Laser	Unit No:- 2	

Multiple Choice Questions		
Question No.	Question Description	Expected Marks
1	Light waves are transverse in nature, can be demonstrated by observing the phenomenon of i) dispersion ii) interference iii) polarization iv) diffraction	1
2	A system in which population inversion is achieved is called i) parallel system ii) active system iii) metastable state iv) pumping	1
3	Optical fibre works on the principle of i) photo-electric effect ii) laser effect iii) total internal reflection iv) refraction	1
4	Principle of laser is i. spontaneous absorption ii. simulated emission iii. induced emission iv. both b and c	1
5	 if a light travels in a certain medium and it gets reflected off an optically denser medium with high refractive index, then it is regarded as	1
6	In an optical fiber, the concept of Numerical aperture is applicable in describing the ability ofa. Light Collection	1

	b. Light Scattering	
	c. Light Dispersion	
	d. Light Polarization	
	Which type of photonic exceed fiber exhibits its their similarity to the	1
	which type of photomic crystal moet exhibits its/their similarity to the	1
	periodic crystalline lattice in a semiconductor?	
7	i. Index guiding fiber	
/	ii. Photonic bandgap fiber	
	iii Both a and b	
	iv None of the above	
	IV. INORE OF THE ADOVE	
	Founded the wave theory of light	1
	i Francesco Grimaldi	
8	" Edward Ampleton	
	iii. James Clerk Maxwell	
	iv. <mark>Christian Huygens</mark>	
	Developed the first laser	1
	1	
	Charles Townes	
	1. Charles Townes	
9	ii. Theodore Maiman	
	iii. Gordon McKenzie	
	iv. Albert Einstein	
	What generates a light beam of a specific visible frequency?	1
	i. Laser	
10	ii. Maser	
10		
	iv. Flashlight	
	Short Answer Question	
Question		Expected
No	Question Description	Marke
110.		Marks
1	Fiber Ontic Cables are preferred instead of Conner, Give reason	2
L	There optice cables are pretented instead of copper. Give reason	2
	The refrective index of core and eledding meterial of a stan index fibre are 1.49	2
2	The reflective index of core and cladding material of a step index note are 1.48	2
	and 1.45 respectively. Calculate:	
	1. Numerical aperature 2. Acceptance angle	
3	Why the center of Newton ring is dark	2
4	State principle of laser	2
_	1 · I · · · · · · ·	
5	Define acceptance angle	2
Č	zeme ascopunce angu,	

6	Define acceptance cone,	2
7	Give the diagrammatic representation of polarized and unpolarized light	2
8	Explain the concept of metastable state in LASER	2
9	Write any two applications of optical Fiber.	2
10	Draw typical diagram for Fiber Optics.	2

Long Answer Question		
Question No.	Question Description	Expected Marks
1	Explain construction and working of He-Ne laser	6
2	Explain construction and working of Ruby Laser	6
3	Explain Principle and structure of optical fibre	6
4	Explain Laurent's half shade Polarimeter	6
5	Explain numerical aperture	6
6	Explain Huygen's theory of double refraction,	6
7	Explain methods for production of polarized light by Reflection, Refraction	6
8	Explain methods for production of polarized light by Double refraction	6
9	Explain wedge shaped film	6
10	Explain Interference of light in thin film	6

Marathwada Institute of Technology, Aurangabad

Department of Basic Sciences and Humanities

Title of the Subject: Engineering Physics BTBS102/ BTBS202		
Title of the Unit: Electron Optics, Nuclear Physicsand Quantum Mechanics	Unit No:- 3	

Multiple Choice Questions			
Question No.	Question Description	Expected Marks	
1	Heisenberg gave his concept in i. 1923 ii. 1927 iii. 1980 iv. 1990	1	
2	Bohr stated that electron isi.material particleii.waveiii.energyiv.none	1	
3	Delta x is related to delta p i. directly ii. inversely iii. no relation iv. none	1	

	Uncertainty principle is applicable to	1
	<mark>i. macroscopic particles</mark>	
4	ii. microscopic particles	
	iii. gases	
	iv. none	
	Uncertainty principle can be easily understandable with help of	1
	i. Dalton's effect	
5	ii. <mark>Compton's effect</mark>	
	iii. electron effect	
	iv. none	
	The concepts of a "particle" and a "wave	1
	i. are clear and completely distinct from one another in both	
	classical and modern physics	
6	11. are not clear and not completely distinct from one another in classical physics	
	iii. have found little use in quantum physics	
	iv. all of the above are true	
	In Electron, microscone, light, course is replaced by a been of your fast maxima	1
	In Electron microscope, light source is replaced by a beam of very last moving	1
	electron	
7	neutron	
	proton	
	photon	
Question	Short Questions	
No.		
1	State De-Broglie's hypothesis of Matter wave	2
2	What is Uncertainty principle	2
3	State Principle for Bainbridge mass spectrograph	2
4	Draw diagram for Bainbridge mass spectrograph	2
5	Draw diagram for G M Counter	2

6	Give any two physical significance of wave function.	2

	Long Answer Question		
Question No.	Question Description	Expected Marks	
1	Derive the time independent Schrodinger's wave equation.	6	
2	Write down the Schrödinger's time independent wave equation	6	
3	State Heisenberg's Uncertainty Principle. Prove electron cannot exist in the Nucleus	6	
4	An electron entering a magnetic field of 10-2 wb/m2 with a velocity of 10^7 m/s describes a circle of radius 6 X 10-3 m, calculate e/m of an electron	6	
5	Explain Measurement of 'e/m' by Thomson's method	6	
6	Determination of electronic charge by Millikan's oil drop method,	6	
7	Explain Bainbridge mass spectrograph	6	
8	Give physical significance of wave function	6	
9	Explain G.M. counter	6	
10	An electron entering a magnetic field of 10^{-3} wb/m2 with a velocity of 10^{8} m/s describes a circle of radius 6 X 10^{-3} m, calculate e/m of an electron	6	

Marathwada Institute of Technology, Aurangabad

Department of Basic Sciences and Humanities

Title of the Subject: Engineering Physics BTBS102/ H	3TBS202
Title of the Unit: Crystal Structure, X-rays and Electrodynamics	Unit No:- 4

Multiple Choice Questions			
Question No.		Question Description	Expected Marks
		Lattice points have another name which is called	1
1	i. ii. iii. iv.	lattice sites lattice arrangements lattice circles lattice array	
2	i. ii. <mark>iii.</mark> iv.	In crystal lattice ions are arranged in two dimensions four dimensions three dimensions single dimension	1
3	i. ii. iii. iv.	Points which shows position of atoms in a crystal are called lattice points lattice lines lattice circles lattice arrangements	1
4	i. ii. iii. iv.	Crystal lattice is actually array of points lines of points sum of points triangle of points	1

	Crystal lattice is also known as	1
	i. lattice triangle	
5	ii. space lattice	
	iii. lattice line	
	iv. lattice array	
	The three dimensional graph of lattice points which sets the pattern	1
	for the whole lattice is called	
6	i. Space lattice	
U	ii. Simple lattice	
	iii. Crystal lattice	
	iv. <mark>Unit cell</mark>	
	If Z is the number of atom in the unit cell that represents the closest	1
	packing sequence ABC ABC, the number of tetrahedral voids in	
	the unit cell is equal to	
	i. Z	
7	ii. <mark>2Z</mark>	
	iii. Z/2	
	iv. Z/4	
Question	Short Questions	
No.		
1	How X-Rays are Produced / Originated?	2
-		-
2	What are the types of X-Rays spectra? How do we get the continuous and sharp	2
3	Line spectrum of X- Rays?	2
4	Give any two applications of X-Rays.	2
5	Give any two Important Characteristics of X-Rays.	2
6	Define the term Unit Cell.	2
7	What are Miller indices	2
Q	Mosley's law	2
o		

Long Answer Question		
Question No.	Question Description	Expected Marks
1	Explain Bragg's law	6
2	Explain Line and Continuous Spectrum of X-ray	6
3	State Maxwell equations give each term involved in it	6
4	Give Atomic radius, packing density, relation between lattice constant and density	6
5	Explain X-ray diffraction	6
6	Explain the concept Electromagnetic wave in free space.	6
7	Explain Bragg's law. Derive the Bragg's equation for diffraction of X-Rays and discuss its application in X-Ray Crystallography	6
8	What is X-ray An X-ray is operated at 20 kv. Calculate the minimum wavelength of X-rays emitting from it.	6
9	Derive the relation between interplaner spacing 'd' defined by Miller Indices (hkl) and lattice parameter 'a'. Calculate the interplaner spacing for (220) plane where the lattice constant is 4.938 A0	4

Marathwada Institute of Technology, Aurangabad

Department of Basic Sciences and Humanities

Title of the Subject: Engineering Physics BTBS102/ BTBS202					
Title of the Unit: Magnetic, Superconducting and Semiconducting materials	Unit No:- 5				

Multiple Choice Questions			
Question No.	Question Description	Expected Marks	
1	i. Ferrites are a sub-group of	1	
	ii. non-magnetic materials		
	iii. ferro-magnetic materials		
	iv. paramagnetic materials		
	v. <mark>ferri-magnetic materials</mark>		
	Which of the following is ferromagnetic material	1	
2	i. Tungsten		
2	ii. Aluminum		
	iii. Cooper		

	iv.	Nickel	
			1
		In superconductivity the conductivity of a material becomes	1
	i.	Zero	
3	11.	Finite	
	<mark>iii.</mark>	Infinite	
	iv.	None of the above	
		In superconductivity, the electrical resistance of material becomes	1
	i.	Zero	
4	11.	Infinite	
	iii.	Finite	
	iv.	All of the above	
		The temperature at which conductivity of a material becomes infinite	1
		is called	
	i.	Critical temperature	
5			
J	ii.	Absolute temperature	
	iii.	Mean temperature	
	1V.	Crystallization temperature	
6		In superconductors, the Fermi energy level is	1
U	i.	Below the ground state	

	ii.	Midway between the ground state and first excited state	
	iii.	Above first excited state	
	iv.	At first excited state	
		The superconducting state is perfectly in nature.	1
	<mark>i.</mark>	Diamagnetic	
7	ii.	Paramagnetic	
	iii.	Ferromagnetic	
	iv.	Ferromagnetic	
			1
		Which of the following are the properties of superconductors?	1
	i.	They are diamagnetic in nature	
8	ii.	They have zero resistivity	
	iii.	They have infinite conductivity	
	<mark>iv.</mark>	All of the above	
		The minimum amount of current passed through the body of	1
		superconductor in order to desiroly the superconductivity is called	
	1.	Induced current	
9	ii.	Critical current	
	iii.	Eddy current	
	iv.	Hall current	
	The e	energy required to break a cooper pair is of the energy gap of	1
	supero	Conductor. One half	
10	ii.	Equal to	
	iv.	Thrice	
11	There	e are three important lengths which enter the theory of	1
11	super	rconductivity except	
	u.	Longon penduduon kingu	L

	b. Intrinsic coherence length	
	c. Normal electron mean free length	
	d. Mean path length	
	The magnetic lines of force connet nonstrate the body of a superconductor a	1
	rhe magnetic lines of force cannot penetrate the body of a superconductor, a	1
	j Isotopic effect	
12	i. Isotopic effect	
	iii Moisspor offoct	
	iv London theory	
	The superconducting state is perfectly in nature.	1
10	i. Diamagnetic	
13	ii. Paramagnetic	
	iii. Ferromagnetic	
	iv. d. Ferromagnetic	
	Superconductivity was first	1
	observed by	
14	i. ohm	
	ii. <mark>H K Onnes</mark>	
	iii. Fermi	
	iv Schrieffer	
	The first successful theory on sumemenduativity, was due to	1
	The first successful theory on superconductivity was due to	1
	i. Bardeen Cooper and Schrieffer	
15	ii Fermi	
	iii Ohm	
	iv London	
	The current in a superconductor produces	1
16	i. <mark>zero, voltage drop across it</mark>	
10	ii. Large voltage drop	
	iii. Small voltage drop	
	iv. Strong electric field	
	At the critical temperature, the resistance of a super conductor	1
17	i. decrease rapidly	
	ii. Increase rapidly	
	iii. Remains constant	
	1v. Increase slowly	
	Sumar conductivity is aybibited by	1
19	Super conductivity is exilibited by	L L
10	i. mercury at 4.2 K	
	ii. hydrogen at 4.2 K	
		1

	iii. potassium at 4.2 K iv. mercury at 4.0 K	
Question No.	Short Questions	
1	What is the effect of Magnetic field on Superconductors?	2
2	Write any two applications of Superconductors.	2
3	.What is Hall Effect in Semiconductor?	2
4	Write the important applications of Soft and Hard Magnetic materials.	2
5	Write any two applications of Magnetic materials.	2
6	What is the effect of Magnetic field on Superconductors?	2
7	Sate microscopic Ohm's law,	2
8	Sate Meissner effect	2
9	What is difference between Ferrimagnetic & Antiferromagnetic material	2
10	Give types and example of magnetic material	2

Long Answer Question			
Question No.	Question Description	Expected Marks	
1	On the basis of domain theory explain B-H curve and hence explain retentively and coercively.	6	
2	What is Superconductivity? Explain Meissner Effect in Superconductors.	6	
3	Derive an expression for electromagnetic wave in free space and hence calculate the value of velocity of light in free space.	6	
4	Explain the construction and working of G.M. counter	6	
5	Explain type – I and type – II superconductor	6	
6	Define and distinguish between hard and soft magnetic materials.	6	
7	Define magnetic materials. Classify diamagnetic, paramagnetic and ferromagnetic Materials in detail giving their differences.	6	

8	Explain resistivity and its temperature dependence	6
9	Give Band theory of solids	6
10	Give Classical free electron theory-electrical conductivity	6